

UPPSALA UNIVERSITET

CATALAN COMBINATORICS

DOCENTSHIP LECTURE

THE HISTORY OF THE CATALAN SEQUENCE 1,1,2,5,14,42,132,429,1430,4862,...

THE HISTORY OF THE CATALAN SEQUENCE

 1,1,2,5,14,42,132,429,1430,4862,...

Minggatu (1692-1763)

THE HISTORY OF THE CATALAN SEQUENCE

 1,1,2,5,14,42,132,429,1430,4862,...

$$
\begin{aligned}
\sin (2 x)=2 \sin (x) & -\sum_{n=1}^{\infty} C_{n} \frac{(\sin (x))^{2 n+1}}{4^{n-1}} \\
\sin (4 x)=4 \sin (x) & -10(\sin (x))^{3} \\
& +\sum_{n=1}^{\infty}\left(16 C_{n}-2 C_{n+1}\right) \frac{(\sin (x))^{2 n+3}}{4^{n}}
\end{aligned}
$$

Minggatu (1692-1763)

A DEFINITION OF THE CATALAN SEQUENCE

Definition

The Catalan sequence is defined by

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Eugène Catalan (1814-1894)

A DEFINITION OF THE CATALAN SEQUENCE

Definition

The Catalan sequence is defined by

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Eugène Catalan (1814-1894)

Philosophical aspects:

- What is the role of a proof?
- What do you (not) like about a certain proof?
- What are the strengths of a certain proof?

Basic properties

Definition

The Catalan sequence is defined by

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Lemma

The following statements hold (for $n \geq 1$):
(i) $C_{n}=\frac{4 n-2}{n+1} C_{n-1}$,
(ii) $C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-1-i}$.

Proof by induction and direct computation

$$
C_{n}=\frac{4 n-2}{n+1} C_{n-1}
$$

Proof.
Induction step:

$$
\frac{4 n-2}{n+1} C_{n-1}
$$

Proof by induction and direct computation

$$
C_{n}=\frac{4 n-2}{n+1} C_{n-1}
$$

Proof.

Induction step:

$$
\frac{4 n-2}{n+1} C_{n-1}=\frac{2(2 n-1)}{n+1} \cdot \frac{1}{n}\binom{2(n-1)}{n-1}
$$

Proof by induction and direct computation

$$
C_{n}=\frac{4 n-2}{n+1} C_{n-1}
$$

Proof.

Induction step:

$$
\frac{4 n-2}{n+1} C_{n-1}=\frac{2(2 n-1)}{n+1} \cdot \frac{1}{n}\binom{2(n-1)}{n-1}=\frac{2 n(2 n-1)}{(n+1) n^{2}} \cdot \frac{(2 n-2)!}{(n-1)!\cdot(n-1)!}
$$

Proof by induction and direct computation

$$
C_{n}=\frac{4 n-2}{n+1} C_{n-1}
$$

Proof.

Induction step:

$$
\frac{4 n-2}{n+1} C_{n-1}=\frac{2(2 n-1)}{n+1} \cdot \frac{1}{n}\binom{2(n-1)}{n-1}=\frac{2 n(2 n-1)}{(n+1) n^{2}} \cdot \frac{(2 n-2)!}{(n-1)!\cdot(n-1)!}=C_{n}
$$

Proof by hidden idea

$$
C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-1-i}
$$

Proof.
Define

$$
a(n, j)=\frac{2 j-n}{2 n(n+1)}\binom{2 j}{j}\binom{2(n-j)}{(n-j)} .
$$

Proof by hidden idea

$$
C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-1-i}
$$

Proof.

Define

$$
a(n, j)=\frac{2 j-n}{2 n(n+1)}\binom{2 j}{j}\binom{2(n-j)}{(n-j)} .
$$

Then, a direct computation shows $a(n, i+1)-a(n, i)=C_{i} \cdot C_{n-1-i}$.

Proof by hidden idea

$$
C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-1-i}
$$

Proof.

Define

$$
a(n, j)=\frac{2 j-n}{2 n(n+1)}\binom{2 j}{j}\binom{2(n-j)}{(n-j)} .
$$

Then, a direct computation shows $a(n, i+1)-a(n, i)=C_{i} \cdot C_{n-1-i}$. Thus,

$$
\begin{aligned}
\sum_{i=0}^{n-1} C_{i} \cdot C_{n-1-i} & =\sum_{i=0}^{n-1}(a(n, i+1)-a(n, i))=a(n, n)-a(n, 0) \\
& =\frac{n}{2 n(n+1)}\binom{2 n}{n}-\frac{-n}{2 n(n+1)}\binom{2 n}{n}=C_{n}
\end{aligned}
$$

Gosper's algorithm

- os.

Bill Gosper (1943-)

$$
\frac{1}{\pi}=\frac{2 \sqrt{2}}{99^{2}} \cdot \sum_{n=0}^{\infty} \frac{(4 n)!}{(n!)^{4}} \cdot \frac{26390 n+1103}{396^{4 n}}
$$

Gosper's algorithm

Problem

Given a sequence z_{i}, find a_{i} with

$$
z_{i}=a_{i+1}-a_{i}
$$

Then,

$$
\sum_{i=0}^{n-1} z_{i}=a_{n}-a_{0}
$$

$$
\frac{1}{\pi}=\frac{2 \sqrt{2}}{99^{2}} \cdot \sum_{n=0}^{\infty} \frac{(4 n)!}{(n!)^{4}} \cdot \frac{26390 n+1103}{396^{4 n}}
$$

Analysis of elementary algebraic proofs

- Understandable with basic mathematical knowledge
- Very little room for error
- Easy to implement in a computer
- Hard to remember
- Hard to communicate

Bijective proofs

Strategy

To prove $a=b$ for $a, b \in \mathbb{N}$, construct sets A and B with $|A|=a$ and $|B|=b$ and a bijective function $f: A \rightarrow B$.

Definition

A function $f: A \rightarrow B$ is bijective if there is a function $g: B \rightarrow A$ such that $g(f(a))=a$ and $f(g(b))=b$ for all $a \in A$ and $b \in B$.

Binary trees

Definition

A (full) binary tree is either:

- A single vertex.
- A tree whose root node has (exactly) two subtrees each of which is a (full) binary tree

Legend: \bigcirc internal
Oleaf

Number of binary trees
Lemma
The number of binary trees with n internal vertices is given by C_{n}.

Number of binary trees
Lemma
The number of binary trees with n internal vertices is given by C_{n}.

Proof.

There is $C_{0}=1$ tree with no internal vertex: \bigcirc

Number of binary trees

Lemma

The number of binary trees with n internal vertices is given by C_{n}.

Proof.

There is $C_{0}=1$ tree with no internal vertex: \bigcirc

Put a binary with i internal vertices on the left tree, thus a binary tree with $n-1$ - i vertices on the right tree.

$$
\rightsquigarrow C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-1-i}
$$

Triangulations of convex polygons

Definition

A triangulation of a polygon is a subdivision into triangles.

Leonhard Euler (1707-1783)

Number of triangulations

Lemma
 The number of triangulations of a convex $(n+2)$-gon is C_{n}.

Number of triangulations

Taking the dual graph provides a bijection to binary trees:

Lemma

The number of triangulations of a convex $(n+2)$-gon is C_{n}.

Number of triangulations

Taking the dual graph provides a bijection to binary trees:

Lemma

The number of triangulations of a convex $(n+2)$-gon is C_{n}.

Number of triangulations

Taking the dual graph provides a bijection to binary trees:

Lemma

The number of triangulations of a convex $(n+2)$-gon is C_{n}.

Number of triangulations

Taking the dual graph provides a bijection to binary trees:

Lemma

The number of triangulations of a convex $(n+2)$-gon is C_{n}.

Number of triangulations

Taking the dual graph provides a bijection to binary trees:

Lemma

The number of triangulations of a convex $(n+2)$-gon is C_{n}.

Dyck paths

Definition

A Dyck path is a path from $(0,0)$ to $(2 n, 0)$ taking only steps $(1,1)$ and $(1,-1)$, whose y-coordinate is always nonnegative.

Walther von Dyck (1856-1930)

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Number of Dyck paths is C_{n}

Preorder traversal:

- root,
- then left tree,
- then right tree

Bijective proof $2(2 n-1) C_{n-1}=(n+1) C_{n}$

Bijective proof $2(2 n-1) C_{n-1}=(n+1) C_{n}$
Collapse triangle with marked boundary edge:
$f:\{$ triangulations with marked boundary edge $\}$
\downarrow
\{triangulations with oriented marked edge (boundary or diagonal)\}

Bijective proof $(n+1) C_{n}=\binom{2 n}{n}$

Definition

A bilateral Dyck paths is a path from $(0,0)$ to $(2 n, 0)$ using only $(1,1)$ and ($1,-1$) steps.

Bijective proof $(n+1) C_{n}=\binom{2 n}{n}$

Definition

A bilateral Dyck paths is a path from $(0,0)$ to $(2 n, 0)$ using only $(1,1)$ and ($1,-1$) steps.

Lemma

There are exactly $\binom{2 n}{n}$ many bilateral Dyck paths.

Bijective proof $(n+1) C_{n}=\binom{2 n}{n}$

Definition

A bilateral Dyck paths is a path from $(0,0)$ to $(2 n, 0)$ using only $(1,1)$ and ($1,-1$) steps.

Lemma

There are exactly $\binom{2 n}{n}$ many
bilateral Dyck paths.
f : \{ binary tree with distinguished leaf \}
\downarrow
\{ bilateral Dyck path \}

Bijective proof $(n+1) C_{n}=\binom{2 n}{n}$

Definition

A bilateral Dyck paths is a path from $(0,0)$ to $(2 n, 0)$ using only $(1,1)$ and ($1,-1$) steps.

Lemma

There are exactly $\binom{2 n}{n}$ many bilateral Dyck paths.
f : \{ binary tree with distinguished leaf $\}$

\{ bilateral Dyck path \}

Bijective proof $(n+1) C_{n}=\binom{2 n}{n}$

Definition

A bilateral Dyck paths is a path from $(0,0)$ to $(2 n, 0)$ using only $(1,1)$ and ($1,-1$) steps.

Lemma

There are exactly $\binom{2 n}{n}$ many bilateral Dyck paths.
f : \{ binary tree with distinguished leaf \}

Bijective proof $(n+1) C_{n}=\binom{2 n}{n}$

Definition

A bilateral Dyck paths is a path from $(0,0)$ to $(2 n, 0)$ using only $(1,1)$ and ($1,-1$) steps.

Lemma

There are exactly $\binom{2 n}{n}$ many bilateral Dyck paths.
f : \{ binary tree with distinguished leaf \}

\{ bilateral Dyck path \}

Bijective proof $(n+1) C_{n}=\binom{2 n}{n}$

Definition

A bilateral Dyck paths is a path from $(0,0)$ to $(2 n, 0)$ using only $(1,1)$ and ($1,-1$) steps.

Lemma

There are exactly $\binom{2 n}{n}$ many bilateral Dyck paths.
f : \{ binary tree with distinguished leaf $\}$

\{ bilateral Dyck path \}

Bijective proof $(n+1) C_{n}=\binom{2 n}{n}$

Definition

A bilateral Dyck paths is a path from $(0,0)$ to $(2 n, 0)$ using only $(1,1)$ and ($1,-1$) steps.

Lemma

There are exactly $\binom{2 n}{n}$ many bilateral Dyck paths.
f : \{ binary tree with distinguished leaf \}

\{ bilateral Dyck path \}

Bijective proof $(n+1) C_{n}=\binom{2 n}{n}$

Definition

A bilateral Dyck paths is a path from $(0,0)$ to $(2 n, 0)$ using only $(1,1)$ and ($1,-1$) steps.

Lemma

There are exactly $\binom{2 n}{n}$ many bilateral Dyck paths.
f : \{ binary tree with distinguished leaf \}

\{ bilateral Dyck path \}

Bijective proof $(n+1) C_{n}=\binom{2 n}{n}$

Definition

A bilateral Dyck paths is a path from $(0,0)$ to $(2 n, 0)$ using only $(1,1)$ and ($1,-1$) steps.

Lemma

There are exactly $\binom{2 n}{n}$ many bilateral Dyck paths.
f : \{ binary tree with distinguished leaf \}

\{ bilateral Dyck path \}

Analysis of bijective proofs

- Much more pleasing to the eye
- Easy to communicate
- Easy to remember
- Requires more preknowledge
- More room for error
- Harder to reduce to the axioms

Outlook: Research perspectives on Catalan numbers

- Nakayama algebras
- Tilting modules
- A_{∞}-algebras and super-Catalan numbers

Nakayama algebras

There is a bijection between (admissible) quotients of the ring of upper triangular
$(n+1) \times(n+1)$-matrices and Dyck paths.

Theorem (Chavli-Marczinzik '22)

The number of projective modules of injective dimension one for the Nakayama algebra corresponding to a Dyck path is equal to the number of fixed points of the 321 -avoiding permutation corresponding to it under the Billey-Jockusch-Stanley bijection.

Tilting modules

Theorem (Flores, Kimura,
Rognerud '20)
There are bijections between:
(1) Binary trees with n internal
vertices,
(2) Minimal adapted partial orders on
$\{1,2, \ldots, n\}$,
(3) Tilting modules for upper
triangular $n \times n$-matrices.

A_{∞}-algebras

Associativity: Result independent of binary tree.

Multiplications with several inputs, i.e. non-binary trees and corresponding multiplication structures.
\rightsquigarrow super Catalan numbers
$1,1,3,11,45,197, \ldots$

Want to learn more?

I recommend lectures by:

Alissa S. Crans

