


CATALAN COMBINATORICS

D O C E N T S H I P L E C T U R E



THE HISTORY OF THE CATALAN SEQUENCE
1,1,2,5,14,42,132,429,1430,4862,. . .

sin(2x) = 2sin(x)−
∞

∑
n=1

Cn
(sin(x))2n+1

4n−1

sin(4x) = 4sin(x)−10(sin(x))3

+
∞

∑
n=1

(16Cn −2Cn+1)
(sin(x))2n+3

4n

Minggatu (1692–1763)
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A DEFINITION OF THE CATALAN SEQUENCE

Definition
The Catalan sequence is defined by

Cn =
1

n+1

(
2n
n

)
.

Eugène Catalan (1814–1894)

Philosophical aspects:
• What is the role of a proof?
• What do you (not) like about a

certain proof?
• What are the strengths of a certain

proof?
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Basic proper t ies

Definition
The Catalan sequence is defined by

Cn =
1

n+1

(
2n
n

)
.

Lemma
The following statements hold (for n ≥ 1):

(i) Cn =
4n−2
n+1

Cn−1,

(ii) Cn =
n−1
∑

i=0
CiCn−1−i .



Proof by induction and direct computation

Cn =
4n−2
n+1

Cn−1

Proof.
Induction step:

4n−2
n+1

Cn−1

=
2(2n−1)

n+1
· 1
n

(
2(n−1)

n−1

)
=

2n(2n−1)
(n+1)n2 · (2n−2)!

(n−1)! · (n−1)!
= Cn
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Proof by hidden idea
Cn =

n−1

∑
i=0

CiCn−1−i

Proof.
Define

a(n, j) =
2j −n

2n(n+1)

(
2j
j

)(
2(n− j)
(n− j)

)
.

Then, a direct computation shows a(n, i +1)−a(n, i) = Ci ·Cn−1−i . Thus,

n−1

∑
i=0

Ci ·Cn−1−i =
n−1

∑
i=0

(a(n, i +1)−a(n, i)) = a(n,n)−a(n,0)

=
n

2n(n+1)

(
2n
n

)
− −n

2n(n+1)

(
2n
n

)
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Gosper’s algor i thm

Bill Gosper (1943–)

1
π
=

2
√

2
992 ·

∞

∑
n=0

(4n)!
(n!)4 · 26390n+1103

3964n

Problem
Given a sequence zi ,
find ai with

zi = ai+1 −ai .

Then,

n−1

∑
i=0

zi = an −a0.
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Analysis of elementary algebraic proofs

• Understandable with basic mathematical knowledge
• Very little room for error
• Easy to implement in a computer
• Hard to remember
• Hard to communicate



Biject ive proofs

Strategy

To prove a = b for a,b ∈ N, construct sets A and B with |A|= a and |B|= b and
a bijective function f : A → B.

w

x

y

z

1

2

3

4

Definition
A function f : A → B is bijective if there
is a function g : B → A such that
g(f (a)) = a and f (g(b)) = b for all
a ∈ A and b ∈ B.



Binary trees
Definition
A (full) binary tree is either:

• A single vertex.
• A tree whose root node has (exactly) two subtrees each of which is a (full)

binary tree

Legend: internal
leaf



Number of binary trees
Lemma
The number of binary trees with n internal vertices is given by Cn.

Proof.
There is C0 = 1 tree with no internal vertex:

i

n−1− i Put a binary with i internal
vertices on the left tree, thus a
binary tree with n−1− i
vertices on the right tree.

⇝ Cn =
n−1

∑
i=0

CiCn−1−i
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Tr iangulat ions of convex polygons

Definition
A triangulation of a polygon is a subdivision into triangles.

Leonhard Euler (1707–1783)



Number of tr iangulat ions

Taking the dual graph provides a
bijection to binary trees:

Lemma
The number of triangulations of a
convex (n+2)-gon is Cn.
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Dyck paths

Definition
A Dyck path is a path from (0,0) to
(2n,0) taking only steps (1,1) and
(1,−1), whose y -coordinate is always
nonnegative.

Walther von Dyck (1856–1930)



Number of Dyck paths is Cn
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Preorder traversal:
• root,
• then left tree,
• then right tree
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Biject ive proof 2(2n − 1)Cn−1 = (n + 1)Cn

Collapse triangle with marked boundary edge:

f : { triangulations with marked boundary edge }

{triangulations with oriented marked edge (boundary or diagonal)}
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Biject ive proof (n + 1)Cn =
(2n

n
)

Definition
A bilateral Dyck paths is a path
from (0,0) to (2n,0) using only
(1,1) and (1,−1) steps.

Lemma
There are exactly

(2n
n

)
many

bilateral Dyck paths.

f : { binary tree with distinguished leaf }

{ bilateral Dyck path }

U

U D U

D D
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Analysis of bi ject ive proofs

• Much more pleasing to the eye
• Easy to communicate
• Easy to remember
• Requires more preknowledge
• More room for error
• Harder to reduce to the axioms



Outlook: Research perspectives on Catalan numbers

• Nakayama algebras
• Tilting modules
• A∞-algebras and super-Catalan numbers



Nakayama algebras

There is a bijection between
(admissible) quotients of the ring of
upper triangular
(n+1)× (n+1)-matrices and Dyck
paths.

•

• • •

• • • • • •

• • • • • • •

Theorem (Chavli–Marczinzik ’22)

The number of projective modules of injective
dimension one for the Nakayama algebra
corresponding to a Dyck path is equal to the
number of fixed points of the 321-avoiding
permutation corresponding to it under the
Billey–Jockusch–Stanley bijection.



Til t ing modules

Theorem (Flores, Kimura,
Rognerud ’20)

There are bijections between:
(1) Binary trees with n internal

vertices,
(2) Minimal adapted partial orders on

{1,2, . . . ,n},
(3) Tilting modules for upper

triangular n×n-matrices.

4

2 5

31 6



A∞ -algebras

x5

x1 x2 x3 x4 x6 x7

Associativity: Result
independent of binary tree.

Multiplications with several inputs, i.e.
non-binary trees and corresponding
multiplication structures.
⇝ super Catalan numbers
1,1,3,11,45,197, . . .



Want to learn more?

I recommend lectures by:

Alissa S. Crans Xavier Viennot
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