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A DEFINITION OF THE CATALAN SEQUENCE

Definition
The Catalan sequence is defined by
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A DEFINITION OF THE CATALAN SEQUENCE

Definition
The Catalan sequence is defined by

C, 1 (2”) Philosophical aspects:
e What is the role of a proof?

e What do you (not) like about a
certain proof?

e What are the strengths of a certain
proof?

:n+1

Eugéne Catalan (1814—1894)




Basic properties

The Catalan sequence is defined by

Lemma

The following statements hold (forn>1):
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Proof by induction and direct computation
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Proof by induction and direct computation
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Proof by induction and direct computation
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Proof by hidden idea
n—1

Cn = Z Cicnf‘]*i
i=0
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Proof by hidden idea
n—1
Cn=Y CiCp1_i
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Then, a direct computation shows a(n,i+1)—a(n,i) = C;i- Cp_1_j.



Proof by hidden idea
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Cn=Y CiCp1_i
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Define o 2\ (2(n—))
N 2j—n Ji n—j
=50y () Conp))
Then, a direct computation shows a(n,i+1)—a(n,i) = C;- C,_1_j. Thus,
n—1
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Gosper’s algorithm

Bill Gosper (1943-)
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Gosper’s algorithm

. |:::| ﬂ: “u Problem
L Given a sequence z;,
> find a; with

., —
Zj=aj1 — 4.

Then,

n—1
i=0

Bill Gosper (1943-)
(4n)! 26390n+ 1103

Z (nh)4 39647



Analysis of elementary algebraic proofs

Understandable with basic mathematical knowledge
Very little room for error

e Easy to implement in a computer

Hard to remember

Hard to communicate




Bijective proofs

Strategy

To prove a= b for a,b € N, construct sets A and B with |A| = aand |B| = b and
a bijective function f: A— B.

A function f: A— B is bijective if there
is a function g: B — A such that
g(f(a)) =aand f(g(b)) = b for all
acAand beB.




Binary trees
A (full) binary tree is either:
® A single vertex.

* A tree whose root node has (exactly) two subtrees each of which is a (full)
binary tree

Legend: Q@ internal
O leaf



Number of binary trees

Lemma

The number of binary trees with n internal vertices is given by C,.
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Number of binary trees

The number of binary trees with n internal vertices is given by C,.

There is Co = 1 tree with no internal vertex: @)

Put a binary with i internal
vertices on the left tree, thus a
binary tree with n—1 —
vertices on the right tree.

n—1
~Ch=Y) CiChyj O
i=0

UPPSALA
UNIVERSITET



Triangulations of convex polygons

Definition
A triangulation of a polygon is a subdivision into triangles.

Leonhard Euler (1707-1783)



Number of triangulations

Lemma

The number of triangulations of a
convex (n+2)-gon is Cp,.
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Number of triangulations

Taking the dual graph provides a
bijection to binary trees:

Lemma

The number of triangulations of a
convex (n+2)-gon is Cp,.
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Number of triangulations

Taking the dual graph provides a
bijection to binary trees:

Lemma

The number of triangulations of a
convex (n+2)-gon is Cp,.
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Number of triangulations

Taking the dual graph provides a
bijection to binary trees:

Lemma

The number of triangulations of a
convex (n+2)-gon is Cp,.
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Number of triangulations

Taking the dual graph provides a
bijection to binary trees:

Lemma

The number of triangulations of a
convex (n+2)-gon is Cp,.
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Number of triangulations

Taking the dual graph provides a
bijection to binary trees:

Lemma

The number of triangulations of a
convex (n+2)-gon is Cp,.
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Dyck paths

Definition

A Dyck path is a path from (0,0) to
(2n,0) taking only steps (1,1) and
(1,—1), whose y-coordinate is always
nonnegative.

Walther von Dyck (1856—1930)
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Number of Dyck paths is Cjp

Preorder traversal:
® root,
® then left tree, &
e then right tree s
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Bijective proof 2(2n—-1)C,_1=(n+1)Cjp

Collapse triangle with marked boundary edge:

f: { triangulations with marked boundary edge }

|

{triangulations with oriented marked edge (boundary or diagonal)}




Bijective proof (n+1)Cp = <2nn)

Definition

A bilateral Dyck paths is a path
from (0,0) to (2n,0) using only
(1,1) and (1,—1) steps.
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Bijective proof (n+1)Cp = (2")

Definition

A bilateral Dyck paths is a path
from (0,0) to (2n,0) using only
(1,1) and (1,—1) steps.

Lemma

There are exactly (2") many
bilateral Dyck paths.

f: { binary tree with distinguished leaf }

|

{ bilateral Dyck path }




Analysis of bijective proofs

¢ Much more pleasing to the eye
e Easy to communicate

e Easy to remember

® Requires more preknowledge
® More room for error

Harder to reduce to the axioms



Outlook: Research perspectives on Catalan numbers

¢ Nakayama algebras
¢ Tilting modules
® A.-algebras and super-Catalan numbers



Nakayama algebras

There is a bijection between
(admissible) quotients of the ring of
upper triangular

(n+1) x (n+1)-matrices and Dyck
paths.

Theorem (Chavli-Marczinzik '22)

The number of projective modules of injective
dimension one for the Nakayama algebra
corresponding to a Dyck path is equal to the
number of fixed points of the 321-avoiding
permutation corresponding to it under the
Billey—Jockusch—Stanley bijection.

o
/\



Tilting modules

Theorem (Flores, Kimura,
Rognerud "20)

There are bijections between:

(1) Binary trees with n internal
vertices,

(2) Minimal adapted partial orders on
{1,2,...,n},

(3) Tilting modules for upper
triangular n x n-matrices.




A.-algebras

Multiplications with several inputs, i.e.
non-binary trees and corresponding

° @ e e e e multiplication structures.
~+ super Catalan numbers

e 1,1,3,11,45.197, ...

Associativity: Result
independent of binary tree.




Want to learn more?

| recommend lectures by:

,.-{"':'I

Alissa S. Crans
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